Overview
Within This Page
Reliability is a great concern for building occupants and organizations. Absence of reliability directly affects personal security and well-being, as well as mission critical work. As workplaces evolve in response to changes in organizational structure and work practices, reliability needs to take into consideration the multiplicity of spaces that support individual and group activities. This applies to all facilities whether public or private, institutional or commercial, large or small, regardless of location, circumstance, and/or purpose. Organizations and the occupants of their buildings are entitled to work places that enable them to remain productive and in-touch at all times. Further, there are financial implications of time lost when systems fail and the workspace is not conducive to occupant productivity. Down time does adversely affect the bottom line.
People increasingly expect work settings to fully support pursuit of individual, team, and organizational objectives without operational uncertainty. Building and information systems that disrupt workflow will not be tolerated. The workforce of the future will demand workspace and tools that amplify their abilities and help them do their best to compete effectively. This calls for systems that perform reliably with good maintenance support.
Building users must be able to rely on facility hardware and software for health, life, safety, power, data, and voice delivery systems (and related equipment and tools). These systems need to function consistently and be properly maintained. When the workplace is supported by high-performance systems that require appropriate levels of maintenance to minimize downtime and have back-up capabilities to ensure negligible loss of service, worker productivity can be improved or maintained.
Recommendations
- Employ an integrated design approach and integrated team process during the project planning, design, construction, commissioning and operations processes.
- Provide freestanding (local) system alternatives for individual user access and control.
- Maximize interoperability of different manufacturers' systems and products (including parts interchangeability).
- Provide adequate training and resources to use and/or maintain systems.
- Select systems based on optimum performance, interoperability, and intuitive operation and maintenance.
- Consider dual-fuel back up and onsite renewable energy systems for critical building systems, including fire/emergency, HVAC, lighting, power, data, voice, etc.
- Provide ease of access for maintenance and repair of systems.
- See also WBDG Functional/Operational Branch.
HVAC
- Maximize conditioning through natural means/methods (e.g. operable windows, natural ventilation, building mass, etc.).
- Consider displacement air supply system that are zoned appropriately for ventilation purposes (e.g., through raised floor system).
- Provide systems with real-time monitoring capability to optimize interaction with building management/maintenance personnel for long-term, efficient operation.
- Provide networked computerized building systems sensors to monitor and manage control of the following systems: HVAC, energy recovery, lighting, building access, security, fire suppression, and smoke alarm.
- Provide building automation systems that are remotely accessible by facilities managers to determine problem locations and monitor environmental conditions without disturbing workers.
Lighting
- Maximize use of daylighting and related lighting control devices (shades, light shelves, etc.).
- Utilize long-life lamps and quality fixtures.
- Zone power circuits to separate ambient and task lighting.
- Utilize occupancy and light level sensing/control devices to extend lamp life.
- Consider emergency back-up lighting systems (generator, battery, etc.) for critical function areas.
- Consider emerging lighting technologies such as low voltage lighting systems, fiber optics, and light emitting diodes (LEDs) that provide quality lighting with greater reliability.
Power Supply
- Provide building surge protection to safeguard data systems and critical electronic equipment.
- Consider Uninterrupted Power Supply (UPS) or other back-up systems (e.g. solar power systems).
- Consider distributed power systems and alternative energy systems for on-site power generation (e.g. fuel cell, solar, wind, microturbines, geothermal, etc.).
Telecommunication Systems/Equipment (voice/data, media systems, connections)
- Support distributed computing (see also WBDG Productive—Integrate Technological Tools).
- Update computer hardware and software periodically.
- Provide interchangeable voice/data cabling (category 5+ or higher, plenum rated).
- Consider telecommunication equipment back-up systems (battery power, etc.).
- Consider wireless systems, where feasible, to promote internal mobility and access to emergency services.
- See also WBDG Productive—Integrate Technological Tools.
- See also WBDG Design Disciplines—Information Technology Engineering.
Security/Safety
- Provide identification/verification systems (such as card key, fingerprints, eye scans, etc.) to access and/or control IT, data, space, and property.
- Provide hardwired smoke alarms with back-up battery power.
- Provide low power usage emergency egress lights and LED illuminators with rechargeable battery.
- Provide security systems with back-up capability for emergency signals and communication.
- See also WBDG Secure/Safe Branch.
Related Issues
Increasing demands for renewable, energy-efficient, and environmentally responsible back-up power sources have lead to advancements in fuel cell technology, solar, wind, hydro, and biomass power systems.
Enterprise Resource Planning (ERP)—the integration of all departments and functions across an agency/company onto a single computer system that can serve all those different departments' particular needs.
Reliability-Centered Maintenance (RCM)—the concept of developing a maintenance scheme based on the reliability of the various components of the system or product in question. Implementing a preventative maintenance program using RCM can greatly reduce the cost of ownership of a product or system.
For most building owners and operators, reliability ranks almost as high as cost as a top "quality indicator" when selecting building systems and equipment. "Problem prone equipment," often selected due to lower first costs, reduces system reliability and is clearly a chief motivator for purchasing quality equipment.
Continuous Commissioning—an ongoing process to resolve operating problems, improve comfort, optimize energy use, and identify retrofits for existing buildings and central plant facilities. Continuous commissioning ensures that the building and systems operate optimally to meet the current requirements, which supports worker effectiveness.
Relevant Codes and Standards
ASTM Standard Classifications and Practices
- ASTM Standards for Whole Building Functionality and Serviceability, 3rd Edition
- ASTM E1660 Serviceability of an Office Facility for Support for Office Work
- ASTM E1662 Serviceability of an Office Facility for Sound and Visual Environment
- ASTM E1663 Serviceability of an Office Facility for Typical Office Information Technology
- ASTM E1665 Serviceability of an Office Facility for Facility Protection
- ASTM E1666 Serviceability of an Office Facility for Work Outside Normal Hours or Conditions
- ASTM E1669 Serviceability of an Office Facility for Location, Access, and Wayfinding
- ASTM E1670 Serviceability of an Office Facility for Management of Operations and Maintenance
- ASTM E1679 Standard Practice for Setting the Requirements for the Serviceability of a Building or Building-Related Facility, and for Determining What Serviceability is Provided or Proposed
- ASTM E1693 Standard Classification for Serviceability of an Office Facility for Protection of Occupant Assets
- ASTM E1700 Standard Classification for Serviceability of an Office Facility for Structure and Building Envelope
- ASTM E1701 Standard Classification for Serviceability of an Office Facility for Manageability
- E 2320 Standard Classification for Serviceability of an Office Facility for Thermal Environment and Indoor Air Conditions
Additional Resources
Publications
- Commissioning the Whole Building Enclosure , Journal of Building Enclosure Design, National Institute of Building Sciences, Winter 2008.
- The Integrated Workplace: A Comprehensive Approach to Developing Workspace by Office of Real Property in the Office of Government-wide Policy of the U.S. General Services Administration. May 1999.
- NASA Reliability Centered Maintenance Guide for Facilities and Collateral Equipment, September 2008.
- Reliability-Centered Maintenance, 2nd Edition by John Moubray. Industrial Press, May 1997. ISBN: 9780831131463.
- "Chapter 75, Renewable and Distributed Energy as a Security Tactic, Energy" in Solutions for Energy Security & Facility Management Challenges, Proceedings of the 25th World Energy Engineering Congress by The Association of Energy Engineers. Edited by Joyce Wells. 2003.
- VA Physical Security Design Manual. Provide for continuing operations of mission critical facilities
- VA Sustainable Design Manual. Focused on Guiding Principles - High Performance
- Whole Building Commissioning Process Manual , Department of Veterans Affairs, Office of Construction and Facilities Management, 2013.
- Workplace Matters , Public Buildings Service, Office of Applied Science of the U.S. General Services Administration. 2006.
Others
- Building Commissioning Association
- Center for the Built Environment, University of California at Berkeley, The Contribution of Building Design and Operation to Productivity
- Center for Building Performance and Diagnostics, Carnegie Mellon University